\(\int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x) \, dx\) [1018]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 217 \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=-\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {(a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {(A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \]

[Out]

-(A-2*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))
*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+(A*a+2*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+
1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))
^(1/2)+(A*b+2*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/
(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+A*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {3126, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {(a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {(2 a B+A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d} \]

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

-(((A - 2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a +
 b)])) + ((a*A + 2*b*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a +
b*Cos[c + d*x]]) + ((A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)]
)/(d*Sqrt[a + b*Cos[c + d*x]]) + (A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}+\int \frac {\left (\frac {1}{2} (A b+2 a B)+(b B+a C) \cos (c+d x)-\frac {1}{2} b (A-2 C) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}-\frac {\int \frac {\left (-\frac {1}{2} b (A b+2 a B)-\frac {1}{2} b (a A+2 b B) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{b}+\frac {1}{2} (-A+2 C) \int \sqrt {a+b \cos (c+d x)} \, dx \\ & = \frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}-\frac {1}{2} (-A b-2 a B) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {1}{2} (-a A-2 b B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left ((-A+2 C) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d}-\frac {\left ((-A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \cos (c+d x)}}-\frac {\left ((-a A-2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {(a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {(A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.33 (sec) , antiderivative size = 385, normalized size of antiderivative = 1.77 \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {\frac {8 (b B+a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 (A b+4 a B+2 b C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i (A-2 C) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \]

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

((8*(b*B + a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d
*x]] + (2*(A*b + 4*a*B + 2*b*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/
Sqrt[a + b*Cos[c + d*x]] - ((2*I)*(A - 2*C)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]
))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a
+ b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] +
b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt
[-(a + b)^(-1)]) + 4*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(987\) vs. \(2(290)=580\).

Time = 6.00 (sec) , antiderivative size = 988, normalized size of antiderivative = 4.55

method result size
parts \(\text {Expression too large to display}\) \(988\)
default \(\text {Expression too large to display}\) \(1035\)

[In]

int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

-A*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+(-
2*a-2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)
^2+(a+b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(
a-b))^(1/2))*a+EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b-EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))
^(1/2))*b)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2
*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b
/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-b*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(
a-b))^(1/2)))/(-1+2*cos(1/2*d*x+1/2*c)^2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2
*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d-2*B*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^
(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),
(-2*b/(a-b))^(1/2))*b-EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*
sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d-2*C*((2*cos(1/2*d*x+1/2
*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(
1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(a-b)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^2, x)

Sympy [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2,x)

[Out]

Integral(sqrt(a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**2, x)

Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^2, x)

Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int(((a + b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^2,x)

[Out]

int(((a + b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^2, x)